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Abstract 

We show that in the R* inflationary model, as in the scalar 
field case, quantum fluctuations at early times can be sufficiently 
large that the universe evolves like a random walk. Within this 
picture we describe the resulting global structure of the uni- 
verse: the so-called “eternal inflation”scenario. Such behaviour 
can naturally fit into a picture of “quantum creation of the uni- 
verse”. Inflating domains are present today and ln fact are grow- 
ing in number. Approximately every IO-s’s new ‘hot radiation 
dominated domains are created which occupy a volume larger 
than all the previously existing Friedmann universes; during 
the first - 10-O fraction of this period the power law expand- 
ing volume exceeds the inflating volume. Regularly, numerous 
domains occur where inflation proceeds purely clsssicaly and 
sufficiently to solve the problems of standard cosmology. 
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Inflationary universe models have in recent years had great success in 
solving a number of important cosmological problems [l-9]. There have 
been two main types of inflationary models: 

i)those involving the domination of the vacuum energy by a scalar field 
which has culminated in the chaotic universe scenario proposed by Linde 

151. 
ii)higher order corrections to Einstein’s field equation. These were first 

constructed by Starobinsky using the trace anomaly [6] of the vacuum en- 
ergy momentum tensor of conformally coupled quantum fields. However 
typical numbers and types of fields in the early universe would not produce 
enough inflation. Therefore a term of the form CR’ was added to the lai 
grangian [7-9, 191 which results in a (qussi) de Sitter expansion of sufficient 
size. This model also naturally accepts a chaotic inflation interpretation 
[s-10]. 

It has been realized, first in the context of the new inflationary model 
[2-31 that due to the nature of quantum fluctuations in the field driving 
inflation, parts of the universe might still be inflating [ll]‘. In the chaotic 
universe model the fields are much larger and the effect of fluctuations 
is more dramatic: they can result in an eternally expanding universe with 
domains of stability (those not expanding exponentially) being infinitesimal 
compared to the total universe [12-141. In this paper we are interested in the 
existence and magnitude of fluctuations in R* type inflation and whether 
they can dominate to produce a similar type eternal universe. We first 
briefly review the eternal chaotic universe scenario. 

Consider a sufficiently large scalar field 10’~ > 4 > p (where b2 = 
3(2n2)/8rG, M, = G-‘, and M, is the Planck mass - 10rgGeV) that 
comes to dominate the energy density of the universe. One assumes that 
the initial configuration is such that spatial gradients can be neglected, 
that is, the characteristic scale I on which inhomogeneities show up is much 
larger than the horizon size H-i. The field then rolls towards its minimum 
during which time the universe expands exponentially. The roll down time 
depends on both classical and quantum effects: for a massive scalar field 
the classical change in 4 for a Hubble time (t=H-’ ) is Ad - M,1/q+ [12]. 

‘A similar thing can occur in the originalinflationary model if the probability of ‘bubble 
formation’ is sufficiently small. 
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Computing quantum effects while treating the scalar field as effectively 
homogeneous ( I >> H-r), one finds that quantum fluctuations can either 
decrease or increase c5 by an amount -H during an Hubble time. This 
quantum fluctuation Sc5 has the magnitude - m$/M, for a field of msss m 
[12]. Therefore /6q% > A4 if I$ > 4. E Mp(Mp/m)‘/*, which is - lOOM, 
for a realistic model [12], if the mass is restricted to be m < lo-sM,,, 
as required by the limits on the anisotropy of the microwave background. 
Consider a single domain with an homogeneous field 4 > 4. of size H-r; 
the number of horizon size regions grows like P’ - e3 (for the Hubble 
time). In typically half of these regions the fluctuations will increase 4: 
these domains in turn will expand independently and can create further 
domains with fields 4 > 4.. The other domains where fluctuations have 
decreased 4 below 4. expand exponentially to some (large) finite size and 
evolve eventually into a universe like our own. However, because the Hubble 
parameter increases with 4 the main part of the total universe is made up 
of the expansion of domains with the largest fields [12-141. 

Following closely the analysis of (91 we now quickly review the R* type 
inflation and show that quantum fluctuations lead to a similar behaviour. 
The evolution equation for the scalar curvature R has the form [6] 

OR+:=0 

R therefore behaves like a damped harmonic oscillator; when c is large 
the “potential” is flat so that there is sufficient time for inflation to occur. 
The curvature and Hubble parameters are related by R = 12Hr + &I. If 
CR >> 1 there is a (quasi) de Sitter expansion (I? << Ha) with the Hubble 
parameter being a linearly decreasing function of time 

(2) 

The total inflation is 18# e-folds (throughout the subscript i denotes 
values at the start of the de Sitter expansion, e refers to those at the 
end): to solve the various cosmological problems [l] requires -70 e-folds. 
When the de Sitter stage finishes reheating occurs due to an oscillating 
scale factor-for details see [9, 16171. From considerations of scalar field 
perturbations epsilon is constrained such that: 10” < c-1/2 < 10’s GeV. 
[9]. Therefore sufficient inflation requires Hi 2 iY,, - 10m6MP. 
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For our purposes it is convenient to work in the so called conformal 
picture so we perform a transformation of the form [18,19] ( conformal 
quantities are denoted by a -) 

GM” = (I+ 2ER)g,v (3) 

where for a Friedmann Robertson-Walker(FRW) metric the conformal time 
is related to physical time by 

dt = (1 + 2cR)+dt (4) 

There is again a self consistent solution for ER >> 1 which is a constant 
conformal Hubble parameter and a linearly decreasing R [9] 

The Lagrangian L3 = -(l&G)-‘(R + CR*) becomes in the conformal 
picture 

In this Lagrangian the physical curvature behaves like a massive scalar field 
of mass m N c-1/z coupled to the conformally transformed metric. This 
is not surprising since R + R’ gravity does have a graviton and a massive 
scalar in its spectrum [20]. Using the substitution z = $n(l + 2cR) we can 
rewrite this ss 

L = -&5k)2 + .g (1- c-r,)2, 

This Lagrangian now has a regular kinetic term with an unusual poten- 
tial. However, for CR >> 1 the potential term contributes only a cosmo- 
logical constant and we can therefore use the results of [21] to determine 
the quantum fluctuations. The fluctuations are described by (zz), given by 
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We wish to calculate the fluctuation 6R in curvature: since 6R = 2R6x, 
where6z=m 

In analogy with the scalar field case we wish to compare the size of 
the quantum fluctuation with the classical decrease in R over the same 
timescale. For a Hubble time (k-r) the quantum fluctuation has the mag- 
nitude 

This agrees (up to a Zogk factor) with the amplitude of fluctuations of 
any wavelength at the time of horizon crossing [9], a~ it should. The classical 
change in curvature AR for the same conformal time is (from eq.6) 

Therefore quantum fluctuations are dominant when 6R > AR that is 
for t 

N 10-3Mp, 

where c~r/~ - 10” GeV. has been used, as required by the analysis of the 
scalar perturbations [9]. Observe that this is a rather natural value for the 
Hubble parameter, being the geometric mean of the two mass scales present 
in the model. In physical variables the dispersion is given by, 

(6R2) = sH%t (14) 
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It is modified with respect to the scalar field case Eq.(9), since the curvature 
has dimension two. One could compute corrections for smaller ER but 
we are not interested in these here. A similar formula to (14) has been 
conjectured by Pollock [23]. 

Our value for the quantum fluctuations in curvature also coincides with 
those obtained by Vilenkin [16], who considered quantum tunnelling to the 
conformal anomaly driven Starobinsky inflation. However the physical con- 
text is somewhat different: in Vilenkin’s case the early phase is determined 
by the trace anomaly term - R’logR/M, (where M is some (high) subtrac- 
tion mass), which dominates the RZ term for R > M. The probability for 
quantum creation of the universe is peaked around a value of the Hubble 
parameter (Ho) ( 6xed by the particle content and is typically of Planck 
size) which is the only self-consistent classical inflationary solution. The 
spread of the probability distribution for quantum creation around H. is ( 
eq.(5.19) in ref. [16])-cf. eq.(ll) 

g-xml 
R 6 

(15) 

In the R’ model however, there is a self-consistent inflationary solution 
(quasi-de Sitter) for every R >> c-r: so the probability distribution for 
the quantum creation of the universe allows different curvatures at the 
beginning of the classical evolution [lo]. The spread of this distribution 
is separate to the effects considered in this paper which are the fluctua- 
tions around any possible classical inflationary trajectory, regardless of the 
boundary conditions in Quantum Cosmology. Vilenkin’s results and ours 
have to agree purely for dimensional reasons. 

The evolution of the Hubble parameter in the R2 model is shown on 
Fig.1. Quantum fluctuations modify the early phase for Hi > H, N 
10-3M,. We shall call this phase the random walk inflationary phase. 
For smaller Hubble parameters the effect of quantum fluctuations can be 
neglected and the evolution proceeds purely classically 191. As long as 
Hi > lo-sM,, this classical inflationary phase is sufficient to solve all the 
problems inflation is called for. 

The reason that such fluctuations in the gravitational field show up so 
prominently below the Planck scale is due not only to the higher derivative 
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term in the gravitational lagrangian, but also because we made the coef- 
ficient of the R2 term large in order to have acceptably low anisotropy of 
the microwave background. It is this smallness of G/c that makes possible 
the use of the result [21], to produce a picture of a quantum field in a fixed 
space-time background. At the same time, thii is the weakness of the R2 
or any other inflationary model since we cannot compute such a character- 
istically small parameter from first principles; or to relate it to some other, 
physically relevant sector of the theory. 

There is however another way to describe the dynamics of de Sitter 
universe by utilising the method of Starobinsky (151. Rederivation of our 
result in this context offers a clearer physical picture of the influence that 
quantum fluctuations have, and it allows a simple and transparent proof of 
the eternal inflation. Although the method is applicable to any inflationary 
model, our analysis will be for the R2 model only. This is because for the 
scalar field case, the effective cosmological constant depends on the value 
of the inflaton field, resulting in a random walk with variable step length. 
In the R2 case there is a random walk with constant step length which 
simplifies the analysis. Due to the classical change this random walk is 
taking place on a down-hill slope. Thus, the probability distribution is 
centered on 4(t), or R(t) which evolve according to the classical equations, 
while the spread grows as the square root of the elapsed time measured in 
Hubble units. 

Define @ = P&Z, in accordance with Eq.(S). The main idea of the 
Stsrobinsky method is to split a, such that: 

@=‘a(I)L+@* (16) 

where @S contains only modes with physical wavelength less than s,-rH-r, 
and ‘P& contains all modes with wavelengths larger than c,-‘H-r: c, is 
some small number which will be specified ss follows. We want (PL to be 
our inflaton field. Thus, it has to be homogeneous for the massive scalar 
field on scales I - m-l and larger; for the R2 model this corresponds to 1 - 
&=4-H-‘. Therefore, we shall choose E, - p/c& for the massive 

scalar field case, and t, - l/a for the R2 case. This is the weakest 
point of the construction. As one may conclude from the discussion below, 
the most natural coarse-graining scale is presumably H-l, that is 6, - 1. 



Here, we find that an is defined on domains which contain at least 10s and 
up to 10’s horizon volumes! This is because the limit on anisotropy of the 
microwave background makes c large. The method works regardless of the 
value of s,, which makes far more precise the picture outlined before, which 
used a “homogeneous” inflaton field. A straightforward calculation [I51 
shows that the equation of motion for the inflaton field ‘Pr. is the Langevin 
equation, 

where the last term describes the effect of the short wavelength modes i.e., 
as, on the coarsegrained field. One finds, [15], 

(~(il,~dE(i2,~2)) = $6(i, - i,) 
sin[&iEi]32; - 24 

&qZ~ - 4 
(18) 

The noise term becomes uncorrelated on physical distances greater than 
1 - c,-‘H-l. As a result, domains I3 over which @L is smooth, are stochas- 
tically independent of each other and @pi can jump to new values, as given 
by the noise term. This has a simple interpretation. 

Consider a mode with wavelength just below 1. In one Hubble time the 
expansion stretches it beyond 1 for an amount X(H-‘) - X(0) u X(O), and 
it becomes a new contribution to 0~. Its amplitude is picked at random, so 
one can think of it as a random signal propagating from short distances up 
to distances - 1. The expansion of the domain - 1’ results in about twenty 
new domains, over which @L will have slightly different values, due to the 
superposition of all inflowing modes. If the magnitude of the noise term 
is sufficiently large compared to the classical force, one has the evolution 
of the universe being a constant fragmentation of the l3 domains into new 
ones, where each of them is stochastically independently evolving. We come 
back to the picture already outlined but the size and meaning of domains 
are clarified now. From the correlations Eq.(lS) one obtains dispersions as 
given in Eqs. (9) and (14). 

We shall proceed to describe this early phase by using simple properties 
of random walks. Another technique is to introduce a probability dis- 
tribution for ‘Pn and to straightforwardly [25] write down its appropriate 
Fokker-Planck equation [11,13,15]. Let us only observe that in evaluating 
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the kinetic coefficient for the diffusion term one again finds that H. is the 
boundary above which the diffusion term is dominated by quantum fluc- 
tuations. Further, this Fokker-Planck equation can be transformed into a 
Schrodinger-like equation which, for our purpose, can then be solved in the 
semiclassical approximation [22]. It is straightforward to check that what 
is being said here could use either of these methods. 

The analysis of the random walk inflationary phase proceeds by count- 
ing domains assuming the universe started with at least one domain of size 
1. This is reasonable, since from Quantum Cosmology we know that the 
Lorentzian evolution begins when the size of the universe is greater than 
the horizon size. After some period when the initial anisotropy, inhomo- 
geneity and kinetic term are smoothed out, the size of the universe could 
be sufficiently large as to encompass at least one l-sized domain. 

We shall use the conformal picture: one step takes place after each 
6; - k-r. In what follows, we shall write for simplicity 4 instead of ‘PL, 
which is the true inflaton field. For the classical slide-down from & to q5. 
it takes iri* - eZp[J2(4i/p)] t p a e s, which is somewhere between O(1) and 
10i2. The width of the distribution at d(t) - 4. is 

Compared to 4 E [1,30]~/\/2, this width is small, and the la bulge which 
contains - 68% of the total inflating volume is rather narrow. One might 
be tempted to neglect domains with 4 = di as the Gaussian factor 

is in general very small, within [10-g,10-4], depending on 44. Observe 
however that it increases with Hi. This is because a larger Hi means a 
larger number of steps which broadens the distribution. 

Further, the number of created domains is enormous, reaching at 4 - 
4 I, 

It. - I+# ZT e3Ai* E (O(l),es”ell) (21) 
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If fi,(&), the number of horizon volumes with 4 - bi, at the moment 
h=4*, - is ~V.(C#J~) = 1, the random walk inflationary phase is regenerative, 
es the initial configuration is realized; if fi.(q$) > 1, the process amplifies 
itself. We have, 

iv.(h) - CZP - 
[( 

$10g(z))2 + 54& 
, I 

(22) 

and the exponent is positive as long as Hi > Ii.. Typically, fi,(q$) >> 1, and 
the inflationary universe is self-reproducing. Further evolution, 4. -+ c$., 
changes very little, as the width of the distribution is practically frozen and 
the number of steps is negligible compared to the preceding phase. When 
the mainstream of the distribution enters the reheating phase, domains 
with q3 - 4i are abundantly present but they occupy only 

r= 
(2ci) 

Ne(4i) P*[di], 
312 N -. - 

which is a tiny fraction of the total volume of the universe. The R- 
dependent scaling between physical and conformal volumes makes no nu- 
merical difference. 

In terms of the physical curvature the width of the distribution is given 
by 

R ;“‘I”’ - R(nri-‘) ezp f ( 
[ iiayrJ;;] 

For allowed ranges, n<. E [1012,101s], and E E [1011,10’6]G, it is a very 
narrow distribution. At R - R., the exponent is bounded by 4 1: 10w2, thus, 
R :“” and Rc,.,,de.l are always within the same order of magnitude. The 
probability distribution however, 

dR 1 
h[R] = R\/21;;E ezp 

is log-Gaussian, and with respect to the Gaussian one can take values for R 
further away from the “mean”. In this sense, the R2 model has a broader 
distribution in terms of its natural variable. 
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It is interesting to observe that the width depends only on the initial 
conditions, and is independent of the parameter E which actually controls 
fluctuations. 

Fairly much the same holds true for the scalar field models as well, 
but there is one formal difference. In the R2 case the scalar curvature 
itself performs the random walk and the peak of the distribution is on the 
classical trajectory, (R) = R,i. Whereas for the massive scalar field case 
the scalar curvature is - @, and as a consequence, the expectation value 
of the physical curvature in these models diffuses away from the classical 
trajectory: 

@) = R(tn)[l+ &p4. (26) 

The difference is not very large: when the mainstream reaches R., one finds 
that R,i is only ia. away. 

After (R) drops below R. all domains at the peak would follow a classical 
trajectory that is displaced with respect to one that matches & at t = ti. 
As a result, the relevant number of steps is larger than the classical value 
ni,. 

After the mainstream of the distribution enters the reheating phase, a 
dramatic change in the global structure of the universe takes place. Up 
to this point, domains with high values of the curvature occupy a small 
fraction of the total volume of the universe, as dictated by the Gaussian 
suppression. But from now on, the mainstream of the distribution expands 
only as a power law, while the right hand tail of the distribution continues 
to inflate. 

In fact, the Gaussian shape of the distribution will be modified since 
the random walk takes place within a finite interval R E [C’,M,?]. The 
upper limit can be considered a totally reflecting boundary: if the curvature 
within a domain jumps to a value - q, ‘t 1 is reasonable to expect it back 
with a smaller curvature within Planck time scales since the expansion rate 
is positive. Because the random-walk time scale is - fi, it is an instant 
reflection. 

The lower boundary at R. = c-* can be considered an absorbing bound- 
ary since every domain which reaches it leaves the inflationary phase. Since 
domains with R < c-* have zero diffusion constant, the probability distri- 
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bution for R > c-* is depressed with respect to the Gaussian value: the 
effect is fairly localized though. One can find the distribution explicitly by 
solving a Fokker-Planck equation with an absorbing boundary, but we need 
only the classical slide-down velocity, 

141 = L&e-w 

with which domains leave the inflationary phase. The C$ dependence which 
this velocity has, causes some further deformation from the Gaussian shape, 
but it is small: one finds that for one step, 

The lo bulge takes only Aii = O.SHi/h steps to travels through the left- 
hand boundary and leave the inflationary phase. During the next step the 
leftover inflating volume will expand to a larger value than the volume in 
FRW phase, which expands at a slower rate. However most of the inflating 
phase is again within lo of the lower boundary and at the same time leaves 
the inflationary phase. As a result, in a few Hubble times a rapid transfer of 
the volume to the Friedmannphase takes place. The only domains that still 
inflate are far away at the tail where the drift velocity is small. They expand 
rapidly, but their initial volume is suppressed by the Gaussian profile, so 
it takes some time before they catch up in size with the slower expanding 
Friedmann domains which started with a large initial volume. In this sense, 
the quantum broadening does not make much difference and the transition 
is almost the same ss if the random walk phase did not exist at all: there 
will be a period when the power law expanding domains occupy most of 
the volume in the Universe. 

This is the moment when the self-regenerative nature of the evolution 
can be seen most clearly: the configuration is just like the initial one, only 
the number of domains with 4 = 4i is much larger, Eq.(22). Moreover, 
regardless of &, the random walk generates a nonzero occupation number 
for 4~. Thus, every subsequent inflationary phase can be considered ss 
starting at the Planck boundary. The number of starting domains grows 
in geometric progression. 

Ignoring the leftover Gaussian tail for the,values below d< one finds that 
after the Mth repetition the new contribution to the FRW volume is, 
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&W(t) = fij” 

i- 

&p-1 

c 

where Mt. < t < (M + 1)t.. t. E 36CHi is the duration of the inflationary 
phase. ir?; is the total number of domains generated by the expansion, and 
pi is the number of domains with 4 = di when t = t.. 

Since i?i >> 1, the total volume in the FRW phase is dominated (in- 
stantly) by the volume delivered by the latest inflationary phase. Under 
the same assumptions, the volume that inflates is 

i&F N Ayi3 ezp[34 (30) 

where in the exponent we have the number of steps since the beginning of 
the (M + 1)‘” inflationary phase. The inflating domains catch up with the 
volume of the FRW phase after fii, steps, given by 

which decreases with the growth of Hi. As explained before, we are in- 
terested in Hi + p, for which ii, - O(103). The true value is smaller as 
we neglected the tail left of die The R-dependent scaling to the physical 
volume does increases this number by a few percent. 

Because the number of e-foldings during the inflationary phase from 
Planck-scale values to the end is about 1012, we have that the Friedmann 
domains dominate the volume of the universe for about 10eg of the infla- 
tionary phase, which repeatedly occurs every 10m318 or so. 

We can get some information about the scale of domains today in the 
following way. The amplitude of the scalar perturbations generated during 
the RZ inflation depends on the scale as 6, - cHl,(k), and exceeds unity 
precisely for scales that cross the horizon at Hh(k) 2 H. [9]. We can 
interpret the scale X. which crossed the horizon at H = H, 88 the size of 
the FRW domain. We find, 

X 
H 

. = &lerH?H;l 
H. 

(Ho is todays Hubble parameter) (32) 

which is - el”*H;*, for Ha = lo-‘Mr. What this means in effect is that 
only purely classical inflation after H. inflated our local universe. This size 
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is enormous, out of any observational reach. For a short period (- t.) the 
size of our local universe refers to the largest FRW domain surrounded by 
inflating domains. After this, it is the boundary with respect to another, 
larger FRW domain, with a slightly larger temperature. This temperature 
change is Tz/Tl = dm, w h ere M counts inflation (since the creation 
of the Universe) that caused our local universe, (see Fig.2.). 

The FRW domains ought to have C = 1 due to inflation. However, if 
for whatever reason a single FRW domain contracts and collapses, it does 
not affect the large scale structure since it is always the latest FRW domain 
among them that dominates. The universe is a two-component mixture, 
with both phases being eternal. 

In conclusion, we have shown that provided there exists a domain with 
curvature R = M,c’/~ fluctuations can cause stochastic behavior resulting 
in an eternal inflating universe. This does not contradict energy consider- 
ations 2 since the rapidly increasing scale factor (whose potential energy 
is negative) is compensated for by the in turn rapid increase in curvature, 
whose energy is like “msss” positive, cf.(14]. This confirms the eternal 
universe picture in the inflationary model based on the higher derivative 
gravity, and due to the simplicity of the R2 inflation in the conformal pic- 
ture, provides a fairly explicit insight into the dynamical role of the quan- 
tum fluctuations. In particular, the standard issue of a “field homogeneous 
over scales larger than the horizon” is resolved by a proper treatment of 
quantum fluctuations [ 151. 

The growth in the number of the coarse-grained volumes is a built-in 
arrow of time, and the random walk inflationary phase naturally fits into 
the concept of quantum creation of the universe: the inflation is eternal in 
that it has no end, but it is compatible with the existence of a beginning. 
One task of Quantum Cosmology is to find the distribution for the initial 
conditions of the universe. Since during the random walk inflationary phase 
many domains with curvature on the Planck scale are created regardless of 
the initial curvature, (so long as it permits a random walk phase), we only 
need to know how likely it is that the initial curvature will exceed R,. 

The Wheeler-Dewitt equation has two independent solutions which can 

‘this is rather heuristic since gravitational energy is not well defined in non aaymptot- 
idly flat space-times:aee for example [241. 
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be organized into solutions that obey Hawking’s [x] (%o boundary”), and 
Vilenkin’s 1271 (“tunneling from nothing”) boundary conditions. We are 
interested in the probability measures for the initial conditions of these two 
cases for R E [c-l, A$]. They are [lo], 

dP~=$xcp dPV =$zp 

We find, 

Pv[& > R.] c- 1, PH[& > R.] c- e-1o’1! (34) 

For our interpretation, this is a dramatic difference: in Hawking’s case 
it is far more likely that the universe will start with a curvature below R. 
and proceed on a purely classical trajectory, while in Vilenkin’s case the 
random walk inflationary phase is unavoidable. When the curvature within 
a domain falls below this bound, new universe generation by such a domain 
becomes inefficient: however there is still enough classical inflation (> 70 
e-foldings) that the resulting mini-universe is homogeneous and isotropic. 

Note added: While writing up this work a paper by Pollock [28] ap- 
peared, in which the bound, Eq.(13), is derived by a similar method. 
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Figure Captions 
Fig. 1) The evolution of the Hubble parameter. The solid line represents 
the classical trajectory Hi + He. The dashed lines are two examples of a 
random walk for H > H.. Scales within the current horizon are affected 
by H < Hh inflation only. 

Fig. 2) The global structure of the universe. I and F represent inflat- 
ing and Friedmann domains respectively. N stands for y nothing”: a state 
with no Lorentzian space-time. 

The areas of the boxes represent the volumes of the given phases. Rel- 
ative sizes are not to scale but are correctly ordered within each column. 
It takes - 1O-318 to travel down a column and - lo-“‘8 to go to the next 
column. The size of ‘our” F domain today is about esp[106] times the 
present horizon length. 
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